Sensor-Based Robot
Motion Planning

A Tabu Search Approach

lanning robot motions in unknown environments has

been an attractive research theme for many roboticists

during the past two decades. The class of motion plan-

ners dealing with this kind of problem is

known as online, sensor-based, local, a pos-
teriori, real-time, or reactive motion planners.

Among the first works on online motion

planning is Lumelskys Bug algorithm
presented for a point robot to move
from a source point to a destination
point, using touch sensing in a planar
terrain populated with arbitrarily
shaped obstacles [1]. Cox and Yap
developed algorithms to navigate
a rod to a destination position in
planar polygonal terrains [2]. A - -
survey on early online path plan- Fl “dlng ¥
ning works is provided in [3].
Another noteworthy approach
for real-time planning is Khatib’s
potential fields (PFs) method, in
which a point robot is directed

Path

by the forces in a field of poten-

the Right

[7] for online motion planning through incremental construc-
tion of medial axis.

Other works such as [8] have tried to guide the motions of
the robot along the edges of the visibility graph of a
workspace of convex polygons in online mode. In

[9], an algorithm is presented in which the
visibility graph of the workspace is incre-
mentally constructed by integrating the
information of the paths traversed so
far, and then, a globally optimal path
is planned after the graph comple-
tion, as in offline mode.
In addition to the classic motion-
planning approaches, other optimi-
zation methods generally known
as heuristics have been increas-
ingly employed for planning and
! optimizing robot motions. Heu-
ristic algorithms do not guarantee
to find a solution, but if they do,
they are likely to do so much
faster than the competing com-
plete methods.

tials exerted by repulsive obstacles
and the attractive goal [4].

Aiming to take advantage of
the properties of roadmaps con-
structed usually in the offline mode,
some researchers have tried to utilize

Some well-known metaheur-
istics such as genetic algorithms
(GAs) and simulated annealing

(SA) have found applications in
robot motion planning. In [10], the
path planning problem is expressed as

the distance transform approach to build

them incrementally. In [5], an algorithm is
proposed for the navigation of a circular
robot in unknown terrains by iteratively visit-
ing the vertices of the Voronoi diagram. Choset
developed an incremental method to construct the hierarchical
generalized Voronoi graph (HGVG) [6], which exploits some

bridge edges (called GVG?) to maintain the connectivity of the
GVG in high dimensions. Also, another method is proposed in
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an optimization problem and solved with

a GA. It is done by building a path planner

for a planar arm with 2 degrees of freedom, and
then for a holonomic mobile robot. In [11], the
path planning for vehicles is formulated as an optimiza-
tion problem; the goal is to choose a path connecting initial and
final points that crosses the least number of obstacles (with the
eventual goal of zero crossings) in configuration space. A GA is
devised in which the population is a set of paths. The SA
approach is widely used in combination with the artificial
potential field approach to escape from local minima, as in [12].
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The Tabu Search

The tabu search (T'S) method is another well-known metaheuris-
tic technique first introduced by Fred Glover in 1989 [13]. TS isa
powerful algorithmic approach that has been applied with great
success to a large variety of difficult combinatorial optimization
problem areas, such as assignment, scheduling, routing, TSP, etc.

TS has three phases: preliminary search, intensification, and
diversification. During the first of these three steps, TS is similar
to some other optimization methods in that whatever point x
in the input space the robot is currently at, it evaluates the crite-
rion function f(x) at all the neighbors N of x and finds the new
point &’ that is best in N. Repeating this idea creates the possi-
bility of endlessly cycling back and forth between x and ' (a local
minimum). To avoid this, TS differs from many other methods
in that the robot moves to x’ even if it is worse than x.

TS keeps track of performed moves and labels the recent
moves as tabu moves, meaning that the search shall not revisit
these points. The set of tabu moves is called tabu list (which is
actually a push-down stack of s elements managed in a first-in/
first-out manner), and its size is called tabu size. So that, for
instance, once the move x — x’ has been made, the reverse
move x' — x is forbidden for at least the next s moves. Of
course, when a tabu move has a cost lower than an aspiration
level, it can be selected regardless of its tabuness. In addition to
this tabu list, which is a recency-based short-term memory, we
might introduce a frequency-based memory that operates on a
much longer horizon (e.g., the last 50 iterations) and penalize
the most frequently visited moves.

In the second (intensification) part of the search, it 1) starts
with the best solution found so far (which is always stored
throughout the entire algorithm), 2) clears the tabu list, and 3)
proceeds as in the preliminary search for a specified number of
moves. Finally, in the diversification phase, the tabu list is
cleared again, and the s most frequent moves of the run so far
are set to be tabu. Then, it chooses a random x to move to and
proceeds as in the preliminary search phase for a specified
number of iterations. The intensification phase focuses on the
promising regions discovered during preliminary search,
whereas the diversification phase forces exploration of com-
pletely new regions [14].

In this article, we introduce a TS-based robot motion-
planning algorithm, which is in fact the first of its kind, as we
did not find any prior instance in the literature. One reason
might be that a straightforward way for defining tabu and non-
tabu moves is via discretizing the C-space, for which some
approaches like PFs have been introduced long ago. Neverthe-
less, because of our different approach in defining neighbor-
hoods, employing T'S has been possible and effective.

The Motion Planner’'s Components

The new online motion planner presented in this article incor-
porates the robot’s sensory data into the intelligence induced
from the TS technique.

Before dealing with the major components of the motion
planner, we define a move: a move is a motion from the cur-
rent point x to another point inside the free C-space (Cee)
with a step size equal to the radius of the current point’s locally
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maximal disc (LMD)—which is the largest disc centered
around x and completely contained in Cg..—and a direction
along one of its radial sensors (Figure 1).

The outline of the algorithm is as follows. Beginning from
the start point, the robot performs a visibility scan to find visi-
ble obstacle vertices and decides to move toward an obstacle
vertex it finds most promising according to a cost criterion.
Upon making the move, backward directions are labeled as
tabu and excluded from the set of next promising directions.
The visibility scan and its ensuing operations are repeated for
the new location, and the robot continues to navigate the envi-
ronment until it sees the goal point. If at any stage the robot is
trapped in a local minimum, it takes a random and relatively
large step toward unexplored areas of the search space and con-
tinues its search in that area. The algorithm’s main components
are described later.

Perception Component

The perception component is responsible for acquiring infor-
mation from the environment and processing those data to
determine the appropriate moves for the robot at each itera-
tion. This is done by 1) performing a visibility scan and
2) detecting the visible obstacle vertices.

Upon arriving at a new point in the workspace, the robot first
determines its distance to the surrounding obstacles by means of
its radial range-finder sensor readings, which yields a list of candi-
date moves. Suppose that a circular mobile robot with radius
R,op and S range-sensors situated equidistantly on its perimeter
is centered at point ¢. Each sensor projectsarayr, (i=1,..., S,
counterclockwise) to find out its distance p; from the nearest
visible obstacle point x; along the i-th direction (Figure 1).

Taking the metric D(x;,x,) for the Euclidean distance of
points x; and x,, we have p; = D(x., X;) — Ryob, Where X, is
the coordinate of the robot center’s current position in the
workspace. A representation of p;’s versus ray angles is depicted
in Figure 2(a).

=
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0 5 10 15

Figure 1. The visibility scan of the environment from the
robot’s location at point c.
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In order for the robot to avoid getting trapped in obstacles’
concave regions and bypass any blocking obstacle, it should
move toward the tangent rays of the obstacle’s boundaries. A
ray 7; is tangent to an obstacle if in a neighborhood U of x; the
interior of the obstacle lies entirely on a single side of the line 7.
Otherwise, the robot’s motion toward the middle of the obsta-
cle will lead to collision. This strategy stipulates the robot to
distinguish the obstacle’s outermost vertices, or in a broader
sense (if the obstacles are not polygons), the regions adjacent to
tangent rays, as viewed from the robot’s vantage point.

For determining the tangent rays, a difference function is
applied for successive adjacent rays to calculate the ray differ-
ence variables, as

Pi = Pit1 — Py (€]

Figure 2(b) shows the difference variables of the Figure 2(a).
The sharp peaks (both positive and negative) imply abrupt and
large differences in successive ray magnitudes, and so indicate
the points where sweeping rays leave or meet a convex con-
tour on the obstacle boundary. These peaks are detected by
applying a notch filter to the plot. If no peaks are found, then
the algorithm shifts to the diversification mode in which a ran-
dom step is taken by the robot.
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Figure 2. (a) The magnitudes of rays emitted from the robot’s
position in Figure 1, which was acquired by range sensors.

(b) By applying a difference function, obstacle vertices are
identified by sharp peaks. Insignificant peaks are omitted by
using a notch filter (dashed horizontal lines at +0.9).
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Cost Evaluation Component
After determining visible obstacles’ extreme vertices, the cost
evaluation component associates a value to each tangent ray as
a measure for the cost of reaching the goal via the direction of
that ray. The criterion by which the cost is specified is a com-
pound function. It incorporates two basic functions related to
each ray: 1) distance function and 2) neighborhood function.
The distance function fp(r;) aims to estimate the length of
the path connecting the robot center’s current configuration
to the goal configuration and is defined by

fD(Vi) = /11 . D(X,_»7 Xl') + }.,2 . D(X,‘, Xg). (2)

The first part of (2) is deterministic and is calculated in the
perception component. The second term is a heuristic esti-
mation for the length of the free path connecting the s
endpoint x; and the goal point x,. The weighted linear com-
bination of these two terms (with 4; and 4, as weights) pro-
vides a heuristic criterion widely used in the A* search
technique. The thick dotted lines in Figure 1 show the dis-
tances involved in building the cost function: the lines origi-
nated from the robot’s configuration show the tangent rays,
i.e., the perceived obstacle vertices, and the lines to the point
¢ present rough estimations for the distance of the vertices to
the goal point, as in the A* search.

The neighborhood function fy(r) measures the degree of
change in the magnitudes of neighboring rays occurring at r;
and is expressed as

() = o max{p;, p;_1 }, 3

where o is a tuning parameter. A large value of fy(r;) implies
that the obstacle (vertex) adjacent to r; has a relatively large free
space behind it and will possibly lead the robot to a key posi-
tion in the configuration space, hence offering a better maneu-
verability for it. Small amounts of fy(r;) indicate cramped
areas, narrow passages, or obstacle borders, which generally
have lesser priority for navigation.

The overall cost evaluation criterion C(r;) is minimizing
a blend of the distance and neighborhood functions accord-
ing to

Clr) = P, fo(r) (), )
in which f and y are scalars and P; is defined as

e if r; has the direction of the last move

P, = ¢ v if r; points to a visited vertex

t if r; is a tabu direction. ®)

Through its reducing effect, the parameter ¢ < 1 encourages
the robot to continue its navigation along a direction selected
in the past few iterations and to be not diverted frequently by
every new vertex that appears in its scope. The parameter v
increases the cost of a ray pointing to a previously visited ver-
tex, whereas the parameter ¢ imposes a penalty for directions
that are designated as tabu ones. The suggested values for these
parameters are shown in Table 3.
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After evaluating all rays, the motion planner is able to select
the most promising goal-oriented direction to move along,
which corresponds to the ray associated with the lowest cost.

Note that since the neighborhood function fy(r;) has a
negative exponent in (4), its large values (corresponding to
tangent rays) reduce the overall cost dramatically. It follows
that the probability of selecting obstacle vertices as next prom-
ising destinations is much higher than that of the ordinary rays
(which point to obstacle borders), and, therefore, the robot is
naturally being attracted to vertices. On the other hand, the
distance function fp(r;) in (4) increases the probability of select-
ing near-to-goal destinations through its positive exponent. In
other words, the designed cost evaluation function leads to
locally optimal (i.e., shortest) navigations, just as the visibility
graph does in offline mode, and, thus, the robot’s performance
improves significantly.

Aspiration and Desperation Levels

The aspiration level is a level set to accept a very good move, even
if it is tabu. This is an established concept in TS, proposed by
Glover. Now, we make the TS metaheuristic more flexible and
powerful by introducing a new concept called desperation level.

The desperation level is a level (of cost) beyond which a non-
tabu move having higher cost values (for minimization problems)
or lower cost values (for maximization problems) is rejected and
included in the tabu list. It is somehow a counterpart and comple-
mentary concept for the aspiration level. The relation of these
levels with regard to the tabu or nontabu moves is depicted in
Figure 3. The gray sections of the diagram (i.e., II and IV) repre-
sent unacceptable moves, since they are either tabu—with costs
not better than the aspiration level—or nontabu, but with costs
higher than the desperation level.

In our planning context, it frequently happens that there
are no nearby nontabu obstacle vertices. Instead, there are
some remote vertices with high costs beyond the desperation
level. Excluding such vertices from the moves list will make
the list empty and limit the search space, which in turn will
activate the diversification component and will cause the robot
to take a random step toward unexplored areas of the space.

The Short-Term Tabu List

The notion of a tabu list is critical and fundamental to this
approach. The attribute by which we set up tabu lists is the
direction of the rays emanated from the robot.

In each iteration, tabu moves are identified based on the
robot’s direction. A tabu envelope (TE) variable is specified to
set the range of tabu directions. It is laid out symmetrically
around the reverse of the robot’s direction, covering all rays
within a =TE/2 deviation. For instance, in Figure 4, the
robot’s initial direction is 50°. By setting TE = 90°, all the
directions included in the area (1 + 50°) % 45° (i.e., 185-275°)
are characterized as tabu moves (the gray sector).

For setting up the short-term tabu list, if its size (STLS) is
set to k, then the tabu directions of the last k iterations are
appended to form the total set of tabu moves. We found k = 2
to be the best size, although k = 1 is also possible, but it leads
to more fluctuations in the robot’s motion.
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The Long-Term Tabu List

Aside from the short-term tabu list discussed earlier, we set a
long-term tabu list by keeping a record of the already visited
(i.e., almost touched) vertices. If the robot happens to head for
a visited vertex, then since it has been at that location during
earlier iterations, it should avoid the point and concentrate on
other vertices in view. This is done by a simple checking of the
long-term tabu list, with a size of LTLS. The long-term tabu
list may also contain a set of nonvertex points that are proven
to be ineffective and misleading in directing the robot toward
the goal.

Diversification Component
This component is evoked when there are no admissible non-
tabu directions. This situation occurs when 1) all the vertices in
scope have been previously visited and marked as tabu (i.e., are
in tabu list), 2) all nontabu moves have a cost value higher than
the desperation level, or 3) the robot is entrapped in a dead end.
The robot will then take a large step with a random direc-
tion selected from among rays with big magnitudes (compare
with the concept of the diversification phase discussed earlier).
The short-term tabu list is cleared after this step, but the long-
term tabu list is retained. This action will most likely guide the

Cost Value
\Y

Desperation
Level T

I

|

Aspiration
Level

1]

Tabu ~e—— Nontabu Moves

Figure 3. The aspiration and desperation levels for a
minimization problem. Region IV represents moves considered
unacceptable, although nontabu.

Figure 4. A short list of tabu moves is constructed by
appending the tabu envelopes of the last two iterations.
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robot toward new and unexplored areas of the searching space.
Consequently, all the elements of the short-term tabu list, as
well as some older elements of the long-term tabu list, will be
eliminated.

In fact, the diversification component provides the plan-
ner’s probabilistic-completeness property. That is, given suffi-
cient time, the algorithm will eventually reach the goal if there
is a valid path. The random steps guarantee that the robot will
explore all areas of the workspace.

Safety Component

When the robot approaches an obstacle border closer than a
preset safety radius Ry, it should take a reflective step away from
the obstacle to maintain its safety. This is similar to the behav-
ior of a light beam when reflected from a surface. The reflec-
tive step in Figure 5(a) directs the robot toward a safer location
via a relatively large and outward movement. It also effectively
helps the robot to turn around obstacle vertices and sharp cor-
ners [Figure 5(b)].

The length of the reflective step is set to a few times the
radius of the LMD, and its direction is determined by a sum-
mation of the robot’s direction vector and the obstacle border’s
normal vector.

Goal Connection Component

If the goal point lies within the sights of the robot, then
through a goal connecting operation, the robot’s location is
connected to the goal point via a straight line. The robot then
has to follow that line and terminate its search.

Algorithm Steps

By integrating the aforementioned components in a single

architecture, the TS-based online motion planner follows

these steps to produce a goal-driven trajectory:

Step 1: The goal connection component checks whether
the goal is visible: if it is visible, the current point is
connected directly to the goal, and the algorithm is
terminated. Otherwise, go to Step 2.

Step 3: The cost evaluation component evaluates the cost
of all directions based on a criterion.
Update the short-term tabu list (based on the tabu

envelopes of the last two moves) as well as the

Step 4:

long-term tabu list (based on visited obstacle verti-

ces or misleading configurations).
Step 5: If an obstacle border is closer than the safety radius,
the robot takes a reflective step away from the obstacle
border and goes to Step 1. Otherwise, go to Step 6.
Step 6: Construct a list of nontabu directions by excluding
tabu moves from the set of all moves and consider-
ing the aspiration and desperation levels. If the non-
tabu list is not empty, select a direction with the
lowest cost among the nontabu moves. Otherwise,
activate the diversification component and take a

large step along a random direction. Go to Step 1.

Experimentation

The algorithm was run for several problems ranging from sim-
ple convex to highly concave polygons and mazes and suc-
ceeded in performing effectively. Some of the simulations are
shown in Figure 6(a)—(h). The running times were within a
few seconds using a 2.16 GHz Intel Duo processor.

The robot navigates faster in sparse and uncluttered areas
and more cautiously in cluttered and near-to-obstacle regions.
The sharp angles in the trajectories are due to the reflective
steps. The effect of the diversification component can be seen
in Figure 6(h), where the upper-left large step is the random
move made after backtracking, hoping for exploring new areas.

To test the efficiency of the proposed method and compare
it with other approaches, we designed and solved a number of
test problems. The results are shown in Table 1. Compared
with global optimum solutions, the paths produced by the TS-
based planner had 9.25% average error. Large errors generally
occurred in maze-like problems. Because of the vertex attrac-
tion fact imposed by the adopted cost function, the planner has
a tendency to follow short paths inherited from the visibility
graph roadmap (which produces the shortest path in offline
mode). Therefore, as an online method, the path quality is
quite satisfactory, especially when compared with other oftline
methods like A* grid search, PE, or Voronoi diagrams methods

(Table 1 and Figure 7). Be-

Step 2: The robot activates the perception component,
including the visibility scan and the discovery of
surrounding obstacles’ vertices.

5.8
5.6

4.5¢

foony

cause grid-based methods
(like PF and A*) examine the
neighboring cells of grid points,
the resulting path is rough
and can only have vertical,
horizontal, and diagonal lo-
cal directions.

Since online methods ac-
quire their knowledge of en-
vironment by sensors and plan

i

10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0
(a)

06 08 1012 14 1.6

their path locally, it would be

incorrect to compare the pro-

1.8 2.0 2.2

(b)

cessing times of offline and

Figure 5. (a) The reflective step guarantees that the robot will keep a safe distance from the

obstacles. (b) The reflective step enables vertex surmounting.
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online methods. However,
compared with the average
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processing time of 7.46 s for the A* search and 3.08 s for the
PF method (calculated for the 15 problems), the TS-based
algorithm performed convincingly well.

We also compared the performance of the proposed new
planner with that of an online distance transform method, the
incremental construction of generalized Voronoi diagram
(GVD). This method builds the GVD incrementally using the
information acquired by its sensors [6], [7]. Overall, the path
lengths of the TS-based method are shorter (about 25% less in
our experiments) than that of the GVD method. This is due to
the nature of the Voronoi diagram that keeps the maximum
clearance from the obstacles, whereas the TS-based planner is

The robot navigates faster in sparse
and uncluttered areas and more
cautiously in cluttered and
near-to-obstacle regions.

attracted to obstacle vertices and thus emulates the visibility
graph, which provides the shortest path. Problem 13 in Table 1
was solved by the GVD online method in 24.3 s through 243
iterations and with 24 sensors and a path length of 75.06

(a) (b)

() (d)

Figure 6. Some experiments: (a)—(d) convex and concave obstacles, (e)—(g) maze-like obstacles, (h) a random move is made

following the activation of the diversification component.
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[Figure 7(c)]. The TS-based algorithm’s solution is shown in
Table 1 and Figure 6(e). Other problems were also compared
and gave more or less the same results.

To evaluate the performance of the TS-based planner
against one more online motion planner, we selected the
sensor-based rapidly exploring random tree (SRT) method

[15], which is an online version of LaValle’s rapidly exploring

random tree (RRT) method [16]. The SRT-Star method was
run for the 15 benchmark problems, and the results are sum-
marized in Table 2.

As its name implies, the SRT method builds a rooted tree
from the start point, and at each iteration, by generating neigh-
boring nodes, it extends its branches randomly but toward pre-
viously unexplored areas of the C-space. When encountering

Table 1. A comparison of the path lengths generated by different methods.

TS-Based
Path
Potential Voronoi Visibility Length

TS-Based Online Planner
Number Number of CPU

Path Lengths by Offline Methods
Path A*

Number  Work-
of Convex Space

Problem Obstacles Size of Sensors Iterations Time (s) Length Search®® Fields** Diagram® Graph® Error %
1 1 [10 x 10] 24 7 0.24 10.42 10.61 13.31 14.07 10.33 0.87
2 2 [10 x 10] 24 31 1.37 14.08 14.18 21.74 19.90 13.72 2.62
3 4 [10 x 10] 36 60 4.1 18.85 21.53 24.67 27.71 18.01 4.66
4 5 [15 x 10] 16 36 1.65 14.94 18.27 20.85 21.92 13.92 7.33
5 5 [15 x 10] 16 47 4.09 21.49 22.26 28.77 33.01 19.12 12.39
6 6 [10 x 10] 18 79 7.00 22.64 23.21 27.22 26.82 18.96 19.41
7 7 [15 x 10] 24 40 2.54 17.77 19.53 23.79 26.66 16.95 4.84
8 8 [10 x 10] 24 41 4.20 18.09 18.06 18.81 20.37 15.38 17.62
9 8 [15 x 10] 36 46 5.31 15.74 17.75 21.95 20.47 15.18 3.69
10 7 [10 x 10] 36 83 9.79 25.54 26.25 34.51 31.84 23.73 7.63
11 11 [15 x 10] 20 53 7.36 19.24 18.48 21.94 24.35 16.36 17.60
12 16 [15 x 10] 36 29 10.10 14.07 13.55 18.58 17.40 13.93 1.01
13 11 [13 x 24] 20 183 14.06 64.67 54.50 64.90 74.61 53.60 20.65
14 12 [9 x 10] 24 52 4.62 13.04 19.11 18.46 16.31 12.26 6.36
15 16 [13 x 24] 40 97 23.86 32.43 31.71 36.31 39.46 28.90 12.20
Average 59 6.68 21.53 21.93 26.39 27.66 19.36 9.25

2After graduating the workspace with 1/10 of the unit length.
PWith a best-first search strategy and Euclidean distance heuristic.
‘With filling-up local minima.

9Searched by the Dijkstra’s method.

¢Optimal solution.

(a) (b) (©) (d)

Figure 7. The problem 13 in Table 1 is solved by (a) PF approach in 3.1's, (b) A* search in 41.5 s, (c) online distance transform
(GVD) builder in 24.3 s, and (d) sensor-based RRT planner in 14.4 s.
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a dead end, it backtracks to its parent node and repeats the
procedure, until filling the whole C-space. SRT is essentially
developed for workspace exploration, and not for goal reach-
ing. So, we modified it slightly to terminate the search if the
goal point is viewed by sensors. A sample output for the prob-
lem 13 is illustrated in Figure 7(d).

We observed that SRT fails to reach the goal at some runs,
despite calibrating its parameters carefully. This is because it is
a resolution- and probabilistic-complete method. Since the
time and path length vary greatly because of the SRT’ highly
stochastic nature, we did several experiments for providing
sufficient valid data for our comparison. The failure rate (%),
average number of iterations, as well as the mean and standard
deviation of the results are also included in Table 2. The last
two columns show relative time and path lengths of the
TS-based and SRT planners. In both aspects, values less than 1
show the TS-based planner’ fine performance.

Parameter Setting and Tuning
As a metaheuristic approach, the TS technique requires proper
setting of its parameters.

A key parameter is the number of sensors: it is assumed that
the robot has a circular perimeter equipped with a sensor ring.
Practically, the number of sensors is less than 30 or 40. How-
ever, for our theoretical investigations and simulations, we
selected different sensor numbers such as 12, 18, 24, 36, 40,
60, 72, 90, 120, 180, 240, and 360. The larger is the number of
sensors, the more exact is the perception of the environment.
On the other hand, large sensor numbers require high compu-
tational time and memory.

In the case that the mobile robot (or its sensor) has the abil-
ity to rotate about a central axis, then the number of radial sen-
sors becomes less critical, since a disc-shaped robot, for
instance, can multiply its environmental perception by i times

The tabu search method, which is a
well-known metaheuristic
technique for solving difficult
combinatorial optimization
problems, is being applied in robot
motion planning for the first time.

(i=2,3, ...) viarotating about its center with increments of
21/(S X i) degrees. A sensitivity analysis for the number of
sensors can help users determine the proper degrees of rota-
tion, as well as the hardware requirements for the robot’s suc-
cessful motion planning and navigation. The SRT method
proved to be less sensitive to the number of sensors.

A summary of the parameters used in the algorithm, together
with our suggested values for them, is presented in Table 3.
These values are set through extensive tests and evaluations.

The exploration procedure would be successful if these
parameters are set properly suitable for the workspace under
navigation. To reduce the risk of improper parameter setting for
unknown environments, and to make the planner even more
intelligent, we propose a number of rules and guidelines associ-
ated with each parameter, such that as the exploration goes on,
the robot can adapt itself to different situations by learning more
and more about the environment. Thus, it can adopt strategies
for reaching the goal, avoiding local minima, and tuning its
parameters automatically. We have discussed the effects of tun-
ing each parameter in Table 3. This automatic adaptation makes
the TS-based planner very efficient and powerful.

Table 2. Results of solving the test problems with SRT.

Average Average CPU Time Path Length TS Time TS Path
Number of Number of Standard Standard Failure Versus SRT Versus SRT
Problem Iterations Nodes Average Deviation Average Deviation Rate (%) Time Path
1 28.6 23.7 0.94 0.38 32.92 9.74 0.0 0.25 0.32
2 34.9 27.3 1.20 0.23 37.72 5.63 8.3 1.15 0.37
3 67.8 58.5 3.43 0.53 55.74 6.67 9.1 1.20 0.34
4 119.8 84.8 5.46 2.73 81.60 23.18 0.0 0.27 0.18
5 127.4 94.7 7.21 2.32 90.48 19.18 23.1 0.57 0.24
6 78.5 65.0 3.97 0.84 61.94 8.10 9.1 1.76 0.37
7 147.2 98.8 8.84 3.28 93.84 22.16 9.1 0.29 0.19
8 81.9 58.1 4.49 1.04 54.35 9.02 37.5 0.94 0.33
9 121.8 86.8 10.02 5.48 82.74 24.22 8.3 0.53 0.19
10 71.3 60.6 5.22 0.99 56.52 6.94 50.0 1.88 0.45
11 109.0 77.2 8.48 2.79 72.41 16.87 16.6 0.87 0.27
12 105.4 77.9 18.74 7.89 74.73 23.82 0.0 0.54 0.19
13 254.6 203.7 18.39 8.37 183.60 26.21 65.5 0.76 0.35
14 57.9 45.2 3.28 1.51 41.36 15.16 36.8 1.41 0.32
15 249.7 177.3 38.86 17.97 170.60 45.92 7.1 0.61 0.19
Total average 9.24 3.76 79.37 17.52 18.7 0.72 0.27
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The aspiration level is a level of
cost set to accept very good moves
even if they are tabu, whereas the
desperation level is a level of

cost beyond which nontabu moves
are rejected.

Discussion
Two very important issues of a path planning algorithm are its
time complexity and completeness.

For determining the time complexity of the algorithm, we
should first estimate the number of iterations required to
accomplish the path planning task by establishing an upper
bound for it. The worst condition occurs when the robot takes
smallest possible steps all the time. This happens if the robot
moves along the obstacle borders with a minimum clearance,
determined by the value of the safety radius, while visiting all

the obstacles in the workspace. Suppose that there are m dis-
joint obstacles that are arranged in a regular array. Taking the
overall number of obstacle vertices as n, the total number of
obstacle edges would also be n, and the total border length
would be finite times 1, plus the distances of interobstacle
traversals, which is finite times m. Since m < n, the upper
bound of the maximum number of iterations is in O(n). Even
if this length is navigated with the smallest possible step size
(R;), because of the constant number of computations in
each iteration, the time complexity of the algorithm would
still be in O(n).

Unlike distance transform planners (which explore the me-
dial axis of the C-space thoroughly), the TS-based planner does
not benefit from a similar connected graph, and so it is not com-
plete. However, because of the large diversifying steps taken on
a random basis, the robot can explore all unexplored areas given
sufficient time, and so is probabilistically complete, which means
it is guaranteed to reach the goal within a long time.

Conclusions
The new online motion planner developed in this article is
based on the tabu search metaheuristic. Various components

Table 3. Parameters used in the motion planner.

Symbol Description Suggested Range Conditions for an Increase Conditions for a Decrease
TE Tabu envelope [n/2,7] The workspace is uncluttered There are many narrow
and straight motions would passageways
work well
STLS Short tabu list size 1or2 Must not exceed 2 Cannot find enough vertices
LTLS Long tabu list size [5, 20], integer The number of vertices is large,  Otherwise
or the goal is far from cur-
rent location
AL Aspiration level [0.2, 0.8] Frequent turn-backs are A look-forward approach is
required selected
DL Desperation level [5, 15] Exploring a semiclosed area Escaping an area by random
moves
2, A2 Distance function (0, 1] Jal23 > 1: more predictive than Jall3 < 1: more realistic than
coefficients realistic, for conventional predictive, for unpredictable
areas areas
o Neighborhood function (o, 1] Exploring vast free areas Focusing on reaching the goal
coefficient located behind obstacles via narrow openings and
passages
B Total cost function (0, 3] Moving away from the goal A more goal-oriented, “greedy”
coefficient before approaching it (e.g., action is required
when getting out of a cul-de-
sac)
y Total cost function (0, 3] Exploring vast free areas Focusing on reaching the goal
coefficient located behind obstacles via narrow openings and
passages
e Straight move incentive [0.35, 1] Reacting to (and approach) The trajectory fluctuates much
new obstacles and is not smooth
v Vertex revisiting penalty [6, 10] Cannot find the goal and want  Reexploring a previsited area
to take more random steps
t Tabu direction penalty [4, 8] Exploring unvisited areas Intensifying exploring an area
Rs Safety radius [1.1,1.5] X Riop More safety is required Otherwise
R: Reflective step length [4, 8] X Rs Taking more risk of collision A wall-following behavior is
required
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of the classic TS have been remodeled and integrated in a sin-
gle algorithm to craft a motion planner capable of solving vari-
eties of exploration and goal-finding problems. By employing
different combinations of a number of parameters, the planner
can react intelligently and promptly to the new situations it
faces during the robotic navigation. The presented explana-
tions on the parameters’ definitions and attributes can help
researchers in applying this algorithm to their real-world
experiments and applications.

The newly defined concept of desperation level also enriches
the still-evolving TS discipline, and together with the aspiration
level and the diversification step, it enables the robot particularly
to escape from local minima. Numerous experiments and
comparisons with offline and online methods showed the algo-
rithm’s success and efficiency in coping with difterent problems,
from simple polygons to highly concave obstacles.

Considering the online and sensor-based nature of the
presented model, it is believed that it can be applied to
dynamic environments (with moving obstacles) as well. In that
case, the neighborhood and distance functions must be modi-
fied to accommodate some predictive information about the
velocity vectors of each obstacle.

Keywords

Robot motion planning, sensor-based navigation, tabu search
metaheuristic.
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